
W h i t e  Pa p e r

Designing for Mobile Websites 
using Responsive Design 
Amelia Marschall-Miller



1

W H I T E  P A P E R  /  D e s i g n i n g  f o r  M o b i l e  W e b s ite   s  u s i n g  R e s p o n s i v e  D e s i g n  

The  Social  Imperative  

Over the last few years, the web design community 

has seen a monumental shift in how we think about 

and create websites, due to the rapid rise of mobile 

browser use. From initially just making sure a site 

“worked” on mobile, we are now expected to make 

sure sites are “optimized” for mobile: providing a 

great user experience no matter the device viewing 

a site. There are several ways to accomplish this, 

and one of the most talked about techniques is 

Responsive Web Design (RWD).

Mashable dubbed 2013 “The Year of Responsive 

Web Design”1 ; now is the time to fully understand 

what it takes to have a responsive website, and decide 

if 2013 will be the year you or your organization will 

take this leap.

Is RWD Right for Me?

Before we go in depth about how to develop an RWD 

website, it’s important to understand the different 

options available to achieve a mobile-friendly 

website, and ensure that Responsive Web Design 

is the right choice for your needs. In a nutshell, a 

responsive website uses a fluid layout and flexible 

images adapted with media queries – the ultimate goal 

being a single website, optimized for any screen size. 

Adaptive Web Design (AWD) also uses media queries 

to set breakpoints and create separate fixed-width 

layouts, optimized for multiple screen sizes. So while 

responsive website layouts change fluidly to account 

for any browser width, adaptive websites may have 

slightly less than ideal layouts between breakpoints.  

A third option to achieve a mobile-friendly website is 

to develop a dedicated, standalone mobile website. 

Unlike RWD and AWD, a dedicated mobile website 

is developed independent from a corresponding 

desktop site, and browser detection is used to 

redirect mobile users to the correct site.

RWD, AWD, and dedicated mobile websites all 

have their advantages and disadvantages. The 

following charts compare these techniques and 

native mobile applications.

These pros and cons apply differently to every 

organization. Sometimes larger organizations prefer 

a dedicated mobile site, with mobile-specific content 

KNOW THIS…

Mashable dubbed 2013  

“The Year of Responsive Web Design”
KNOW THIS…

Websites running on a Content 

Management System with easily 

customizable CSS layouts, such as 

DNN, are ideal candidates for RWD.



2

W H I T E  P A P E R  /  D e s i g n i n g  f o r  M o b i l e  W e b s ite   s  u s i n g  R e s p o n s i v e  D e s i g n  

RWD AWD Dedicated Mobile 
Website Native Mobile App

Content  
Maintenance

Easy
Single version of con-
tent is maintained.

Easy
Single version of con-
tent is maintained.

Moderate
Multiple content 
versions need to be 
maintained (however, 
this could be seen as a 
benefit if mobile-spe-
cific content is desired, 
such as for marketing 
purposes).

Difficult
Programmers usually 
need to make content 
changes; sometimes 
content updates re-
quire resubmission for 
app store approval.

Device  
Optimization

High
Optimized for any 
device.

Moderate
Could have less than 
ideal layouts and some 
horizontal scrolling 
between breakpoints.

Moderate
Can be tricky to imple-
ment and test mobile 
detection and redirec-
tion; unless you have a 
CMS solution that has 
a preview option and 
offers tablet redirection.

Difficult
Custom development 
is required for each 
platform (iOS, Android, 
and so on); tough to 
customize between 
device screen sizes.

Development 
Time & Cost

Moderate
Slightly more time  
consuming than a  
new desktop-only  
website development.	
		

Low
Slightly less time consum-
ing than RWD; can most 
easily be applied to an 
existing desktop website.

Moderate
Requires a separate 
website development. 
However, features like 
module sharing can re-
duce the effort required.

High
Requires extensive  
development specific  
to each platform.

Performance Moderate
Can be less than ideal 
since entire site con-
tent is usually loaded in 
most viewing cases.

Moderate
Can be less than ideal 
since entire site content 
is usually loaded in 
most viewing cases.

High
A mobile-specific site can 
be developed to include 
less content and resources 
than its desktop counterpart.

High
Native applications are 
usually developed to 
perform quickly.

Per Device 
Flow 
Optimization

Difficult
Having a single website 
makes it difficult to  
modify the flow for  
different devices.

Difficult
Having a single website 
makes it difficult to  
modify the flow for  
different devices.

Easy
Flows can be optimized 
for different devices 
using multiple site 
variations.

Moderate
Flows can be optimized 
for different devices but 
requires more exten-
sive development.

Adding 
Mobile to 
an existing 
website

Difficult
Usually requires 
redesign of existing 
website, and a com-
plete redevelopment 
works best.

Moderate
Can be more easily 
applied to an existing 
site that RWD, using 
a set Media Query 
breakpoint.

Easy
Can simply focus on 
adding the new mo-
bile-specific  
site content.

Difficult
Can simply focus on 
adding the new mobile 
specific site content but 
requires more exten-
sive development.



3

W H I T E  P A P E R  /  D e s i g n i n g  f o r  M o b i l e  W e b s ite   s  u s i n g  R e s p o n s i v e  D e s i g n  

for marketing purposes, to avoid modifying any 

current desktop website. Dedicated mobile sites are 

also sometimes developed using some responsive 

techniques, so the “mobile” website version also looks 

good on tablets and not just certain phones. But the 

combination of centralized content maintenance and 

optimization across all devices often makes RWD the 

best choice for many organizations, small and large. 

No matter the website technique, a website solution 

is always going to be less costly than a native app. 

Websites running on a Content Management 

System with easily customizable CSS layouts, such 

as DNN, are ideal candidates for RWD. In DNN, a 

responsive design is applied in the skin files, just 

like any non-responsive design. Your columns and 

content panes are laid out as usual in the skin.ascx 

file, while the responsive styles are added using 

media quires in skin.css. 

If you want to “mobilize” an existing site, creating 

a separate dedicated mobile site or using AWD 

will likely be easier to implement than full RWD. 

Responsive Web Design works best when you can 

start with a new code layout and well thought out 

design, which we discuss in the next section.

Designing a Responsive Website

There are more elements to consider when designing 

a responsive website, but the process can easily 

be adapted into your current design style. Before 

developing a responsive site, it is most helpful to start 

with mockups for at least three screen sizes: desktop, 

tablet, and mobile. These mockups do not need to be 

created at any particular device size, since the website 

will be optimized in between these snapshots as well. 

It may be most comfortable to design the desktop 

layout first, which can work fine. After that, you can 

determine how the layout should change when 

shrinking the width for tablet and mobile device 

sizes. Or, many RWD proponents advocate a “mobile 

first” process. From a design standpoint, this means 

thinking about your content and what is absolutely 

necessary for a mobile user, designing the mobile 

layout first and adding more content as is appropriate 

when designing the tablet and desktop layouts.

Regardless of the preferred design process, it is 

important to understand how a responsive website 

layout is modified during development to provide 

workable mockups. Responsive websites use columns 

KNOW THIS…

Regardless of the preferred design process, it is important to understand how a responsive 

website layout is modified during development to provide workable mockups. 



4

W H I T E  P A P E R  /  D e s i g n i n g  f o r  M o b i l e  W e b s ite   s  u s i n g  R e s p o n s i v e  D e s i g n  

of content “floated” next to each other. As a screen 

width shrinks, the columns get skinnier. Once those 

columns are too small for their content to fit, they 

stack vertically, with the later, right columns pushed 

below. This means it is important to keep elements in 

the same general order between each mockup, as it is 

difficult to move content from a column that appears 

later in the HTML markup above earlier columns.

Developing a Responsive Website 

Once your responsive site mockups are ready, you will 

also need to decide if you plan to develop your site 

mobile first. One of the main benefits of developing 

the mobile version as the default website layout is 

improved performance. Since larger images and 

resource-intensive content is often only included 

for larger screens, developing mobile first allows 

you to only load that content once it’s needed. If 

you start by developing the desktop version first, 

some content used on larger screens may still be 

loaded and taking up resources, even if hidden from 

mobile users. However, for the sake of simplicity and 

wider familiarity with traditional desktop website 

development, our demonstration will use a desktop-

first approach. The process of applying responsive 

techniques to a desktop site can be easier to learn 

and understand at first.

Set a Fluid Grid

First up in the CSS, we frame our entire site with a 

fluid, wrapping container:
#page {	
   width: 90%;	
   max-width: 960px;	
   margin: 0 auto; }

By centering the site (margin:0 auto) and setting 

width:90%, this ensures that the site will always 

These wireframes show the 

layout transformations of a 

basic responsive website.



5

W H I T E  P A P E R  /  D e s i g n i n g  f o r  M o b i l e  W e b s ite   s  u s i n g  R e s p o n s i v e  D e s i g n  

have a 5% margin on either side, no matter the 

browser width. This is important to prevent content 

from pushing right up to the edge of browser 

screens and becoming more difficult to read. By 

setting max-width:960px, we are giving our 

website a maximum size, so widescreen monitors 

will still see a standard desktop website size, and 

maintain readable line-lengths.

Within the wrapping container, each content div will 

be floated and have a width set with percentages, 

such as:
#LeftColumn {
   float: left;
   width: 70%; }
#RightColumn {
   float: right;

   width: 30%; }

These two columns will fill the entire width of the 

surrounding container at all times, since 70% + 

30% = 100%. Don’t get confused because we set 

the wrapping container to have a width of 90%. 

Percentage widths are always relative to their 

surrounding element – every div has a total available 

width of 100% within it, no matter the pixel size. Now 

we have two content columns that will sit next to 

each other, expanding and contracting in width while 

always keeping the same proportions and filling the 

surrounding container.

We want to set up all sections of our site layout in 

the same fashion. Any content area of pixel-based 

mockup can easily be translated to percentages using 

a little math: 
Target (px) / Context (px) = Result (%)

This will ensure ratios and proportions remain as 

intended, instead of just guessing at what percentage 

width to use. For example, a 300px wide column 

inside of a 700px wide surrounding container  

in a mockup: 
300px / 700px = 0.42857 or 42.857%

Set Margins

Of course, we need some space between these 

content columns! But we also need to ensure our 

total widths of elements next to each other stay under 

100%. We could do:
#LeftColumn {
   width: 65%;
   margin-right:5% }
#RightColumn {
   width: 30%; }

So 65% + 5% + 30% = 100%. The margin size will also 

shrink and expand proportionately as the surrounding 

container size changes.

Set Media Sizes

Although responsive content areas are set using 

percentages, most included media, such as images, 

will have pixel sizes associated with them. In order 

to ensure media stays within the current size of its 

surrounding container, the following CSS should  

be included:
img, object, embed, iframe, video { 
max-width:100%; }

This small bit of code can do a lot to make sure media 

stays properly aligned within your site.



6

W H I T E  P A P E R  /  D e s i g n i n g  f o r  M o b i l e  W e b s ite   s  u s i n g  R e s p o n s i v e  D e s i g n  

Make Changes with Media Queries

With our layout setup fluidly with percentages, and 

all content set to fill it dynamically, we should have 

a basic responsive site that will adjust as we shrink 

our browser. Of course, if our browser gets too small, 

columns will start to get too skinny, menus will get 

out of line, and things will look broken. That’s where 

CSS media queries come in. 

Media queries serve different CSS based on your 

browser size or type. Media queries can target all 

sorts of aspects of your browser, such as resolution 

and orientation, but for this demo we will simply be 

targeting browser size using max-width. Media 

queries can be included directly in the main CSS file 

(put them at the end, since CSS is applied in the order 

its written), so our CSS file will look something like this:

/* Desktop site CSS first */

@media (max-width:800px) {
   /*tablet-specific styles go here*/
}

@media (max-width:600px) {
   /*smaller tablet styles go here*/
}

@media (max-width:400px) {
   /*mobile styles go here*/
}

If we were developing mobile-first, the CSS order 

would be opposite:

/* Mobile site CSS first */

@media (min-width:500px) {
   /*tablet-specific styles go here*/
}

@media (max-width:700px) {
   /*larger screen styles go here*/
}

/* etc */

At this stage in development, we begin to test and 

review our website at increasingly smaller widths, 

and make necessary adjustments to ensure things 

work well and fit with our smaller mockups. One 

common adjustment is to stack content columns that 

were previously next to each other, by setting 100% 

widths, once they become too skinny:

@media (max-width:600px) {
   #LeftColumn {
      width: 100%;
      margin-right:0% }
   #RightColumn {
      width: 100%; }
}

Remember that media query breakpoints do not 

need to be set at any particular “standard” device 

size, which is common within AWD. For example, 

320px and 480px have been popular breakpoints 

since those are the portrait and landscape widths 

of the Apple iPhone. However, if something looks 

like it needs adjusting at 496px, then that’s where a 

change should be made. Set media queries where 

they are most needed!

We can also show and hide content using media 

queries. Using display:none in our CSS will remove 

content from view when it’s not needed, such as 

hiding a large banner rotator in your mobile media 

query. As previously mentioned, it’s important to 

remember that using display:none does not      



7

W H I T E  P A P E R  /  D e s i g n i n g  f o r  M o b i l e  W e b s ite   s  u s i n g  R e s p o n s i v e  D e s i g n  

generally help performance of the site, since 

the content is usually still loaded and just hidden 

from display.                         

At this point, it’s simply a matter of reviewing 

your website at different sizes and making CSS 

adjustments to improve usability along the way. 

Below is a real-world responsive site example (http://

www.springfieldclinic.com):

Responsive Menu Options
Menus can be one of the trickiest aspects of a 

responsive website, but many different techniques 

and options have recently emerged. Basically any 

menu that is structured using unordered lists can be 

manipulated appropriately for smaller screen sizes.

The easiest option to modify a horizontal menu for 

smaller screen sizes is to switch it to a vertical menu. 

Horizontal list items that have a width set automatically 

for desktop browser sizes simply get a width of 100% 

set for mobile sizes, stacking vertically:

Regular CSS:
nav ul li { 
      float:left;
      width:auto; }

Mobile-size CSS: 

@media (max-width: 480px) {  
   nav ul li { 
      float:none; 		        	    
      width:100%; }
}

This tutorial also shows how to expand upon this 

purely CSS technique to support menus with more 

KNOW THIS…

It’s important to note that in Internet Explorer, media queries are only supported by 

version 9 and above. To support older versions of Internet Explorer, conditional 

comments can be used to link to Internet Explorer specific CSS, or a Javascript polyfill 

can be utilized (see Respond.js from Scott Jehl: https://github.com/scottjehl/Respond)

The Springfield Clinic site adapts to from desktop/laptop 

viewports to mobile/tablet layout without compromising on 

content, navigation, legibility or brand aesthetic.

  



8

W H I T E  P A P E R  /  D e s i g n i n g  f o r  M o b i l e  W e b s ite   s  u s i n g  R e s p o n s i v e  D e s i g n  

than one level: http://ejhansel.com/a-responsive-

drop-down-navigation-menu.

Building upon that basic option, a vertical menu may 

be hidden and only shown when a “Menu” button 

is clicked, freeing up more space for content. An 

extra button used to toggle the menu is hidden from 

desktop view using display:none, and then shown 

while the ul is instead hidden at a mobile size. A 

little bit of jQuery is also used to toggle the menu to 

appear when the button is hit.

The markup:

<nav>			 
   <a href=”#” class=”show-
mobile”>Main Menu</a>	               
   <ul><li>…</li></ul>	
</nav>

Regular CSS:

.show-mobile { display: none; }

CSS to show the button and hide the 
menu for mobile:
@media (max-width: 768px) {
   nav .show-mobile { display: block; 
}
   nav ul { display: none; }     
}

jQuery for the menu toggle:

<script>		
   jQuery(“.show-mobile”).
click(function () { 
      jQuery(“nav ul”).
toggle(“fast”);	
   });
<script> 

Menus can be one of the trickiest 

aspects of a responsive website, 

but many different techniques and 

options have recently emerged.

KNOW THIS…



9

W H I T E  P A P E R  /  D e s i g n i n g  f o r  M o b i l e  W e b s ite   s  u s i n g  R e s p o n s i v e  D e s i g n  

A third option, that also requires some jQuery, is to switch 

a ul menu into a select list. Select lists utilize native 

device controls on many devices, providing a smooth, 

familiar user experience. This technique is thoroughly 

explained by Chris Coyer in the following tutorial:  

http://css-tricks.com/convert-menu-to-dropdown.

Remember the Viewport

A small, but important, detail to remember is to include 

the viewport meta tag in the <head> of the site:
<meta name=”viewport” 

content=”width=device-width”>

This tag ensures mobile browsers show websites 

at the actual size of the browser window, triggering 

the smaller versions of the responsive site. Some 

mobile browsers will zoom out by default to show 

the desktop version of websites if this is not in place.

Responsive Web Design: 
Making the Leap

You should now have a good understanding of what 

Responsive Web Design is, how it compares to other 

mobile web options, and the basics of how to design 

and develop for RWD. While a new web project can 

present a major decision for any organization, the 

web is constantly changing and it’s important to 

consider all modern development options before 

beginning down a new path. While there are many 

more extensive tutorials on how to create a website 

using RWD, this should provide some valuable insight 

on whether responsive is right for you.



10

W H I T E  P A P E R  /  D e s i g n i n g  f o r  M o b i l e  W e b s ite   s  u s i n g  R e s p o n s i v e  D e s i g n  

About DNN

DNN provides a suite of solutions for creating 

rich, rewarding online experiences for customers, 

partners and employees. Our technology is the 

foundation for 750,000+ websites worldwide and 

our customers include True Value Hardware, Bose, 

Cornell University, Glacier Water, Dannon, Delphi, 

USAA, NASCAR, Northern Health and the City of 

Denver. In addition to our commercial solutions, 

DNN is the steward of the DotNetNuke Open 

Source Project.

Amelia Marschall-Miller is Partner and Creative Director at Gravity 

Works in Lansing, Michigan. With five years of hands-on website 

design and front-end development experience, she now balances 

between design, HTML/CSS coding, and leading her team through 

an ever-changing stream of web and mobile projects. Amelia was a 

contributing author to “Professional Mobile Application Development” 

from Wrox, a collaborative effort by Gravity Works as an introduction to various mobile 

development techniques. Amelia is continually exploring the latest responsive website 

design techniques and mobile user interfaces. She is one of the rare designers who likes 

to code. She also has a love of typography, and enjoys swimming, skiing, snowboarding, 

pottery, and competing in triathlons.

ABOUT THE AUTHOR…

For more information about 

Evoq Content, visit

www.dnnsoftware.com

Call us: 

(650) 288-3150

Email us: 

sales@dnnsoftware.com 

c o n t a c t

1 http://mashable.com/2012/12/11/responsive-web-design



155 BOVET ROAD, SUITE 201      SAN MATEO, CA 94402      WWW.DNNSOftware.COM

www.dnnsoftware.com/Privacy | Copyright by DNN Corp. | DNN, Evoq, and DotNetNuke are trademarks of DNN Corp.


